ESPOIR 3.50
MORE EXAMPLES
These additional examples are classified by increasing complexity.

Strategies for success are described. 
See also the new speed up tutorial
In each case, a link to a .zip file is given (including the .dat, .hkl and .imp)
Copyright © 1999, 2000 - Armel Le Bail
Al2O3

This example will illustrate simply how guessed constraints on occupation numbers and special positions allow to obtain more surely the solution, provided the constraints are true...

A first test is already in the ESPOIR 3.00 package (al2o3.dat) with ns=1, testing the models on the pattern regenerated from the "|Fobs|", and with nob=1 and nobt=1, thus working in pure scratch mode, with ntest=10 (10 independent runs).

Now the second test on Al2O3 will work with ns=0 (the fit is directly on the "|Fobs|") (al2o3F.zip) :

  Al2O3 R-3c
4.764 4.764 13.009 90.0 90.0 120.0
R -3 C
1.54056 4 2 2 1 0<-- ns=0, the U,V,W,step line is removed
Al+3O-2
1
3.0 1.6 2.2
6. 6.
2. 1.0 0.002
5000 20000 20000
5000 0.2 2 10
1 10
1 1
1.0 1 0 <--- nocc=1, the occupation numbers are read below
2. 3.   the occupation numbers could be 0.3333 0.5 as well
This is at least 5 times faster than the previous run on the regenerated pattern. The results are similar because there is not much overlapping problems in that very simple case. The best result is :
 Test number :  10
  8-Apr-2000   Hour: 14 Min: 30 Sec: 16
  ISEED =    661750968

64 moves acc. 18000 gen. 14162 tested; R=0.005
 0 perm. acc.  1999 tested
 2 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Al1     0.99477    0.00457    0.85207      2.000
O1      0.65924    0.02364    0.58394      3.000

  8-Apr-2000   Hour: 14 Min: 30 Sec: 35

  Final RF factor    =   4.9909521E-03
The third test for Al2O3 makes use of constraints on special positions : 0,0,z for Al and x,0,1/4 for O. Such positions could be guessed knowing the chemical formula and being sure of the space group (this will not be always so easy...) (al2o3GP.zip) :
  Al2O3 R-3c
4.764 4.764 13.009 90.0 90.0 120.0
R -3 C
1.54056 4 2 2 1 1 1
0.02511  -0.04562   0.03019  3
Al+3O-2
1
3.0 1.6 2.2
6. 6.
2. 1.0 0.002
5000 20000 20000
5000 0.2 2 10
1 0   <-- permutations are impossible in such a case
1 1
1.0 1 1  <-- nocc=1 and nspe =1
2. 3.
8 7    <-- codes for special positions 0,0,z and x,0,1/4     
In this way, a 100% success rate is ensured. This is because the number of degrees of freedom (DoF) is considerably reduced : 2 unknown parameters instead of 6. And the final result is :
 Test number :  10
  8-Apr-2000   Hour: 14 Min: 37 Sec: 59
  ISEED =    297541756

67 moves acc. 19999 gen. and   16085 tested; R=0.006
 0 perm. acc.     0 tested
19 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Al1     0.00000    0.00000    0.64791      2.000
O1      0.30602    0.00000    0.25000      3.000
  8-Apr-2000   Hour: 14 Min: 38 Sec: 30

  Final RF factor    =   6.1535593E-03
  Final Rp(F) factor =   6.0187900E-03









Aragonite

This example is a bit more complex with 4 independent atoms (12 DoF) (aragonite.zip) :

  Aragonite CaCO3
4.961   7.967   5.741  90.00  90.00  90.00
P M C N
1.54056 4 4 3 1 1 1
0.02511  -0.04562   0.03019  3.
Ca  C   O
0
4. 4. 4.
2 1.0 0.01
5000 60000 60000
20000 0.3 2 10
1 10
1 1 2
1.0 1 0
0.5 0.5 0.5 1.
We should find :
Ca        0.25000  0.41508  0.24046  0.50000     
C         0.25000  0.76211  0.08518  0.50000         
O1        0.25000  0.92224  0.09557  0.50000         
O2        0.47347  0.68065  0.08726  1.00000
According to the formula and Z = 4, we know that Ca and C are necessarily on a special position of the Pmcn space group, with 4 equivalents. But the O atoms could either be distributed on one general plus one special or 3 specials. By chance ;-), the good choice was made here and the success rate is 8/10 :
 Test number :   2
  8-Apr-2000   Hour: 14 Min: 53 Sec: 21
  ISEED =    322795864

    450 moves acc.   54000 tested; Chi**2=0.437E-01, R=0.044
     47 perm. acc.    5999 tested
    191 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Ca1     0.74481    0.91512    0.74000      0.500
C1      0.75189    0.26324    0.58666      0.500
O1      0.75234    0.07806    0.09336      0.500
O2      0.47217    0.81861    0.41180      1.000

  8-Apr-2000   Hour: 15 Min: 25 Sec: 36

  Final RF factor    =   7.5921029E-02
  Final Rp(F) factor =   4.3627698E-02
You see that the occupation numbers were guessed but not the special positions. ESPOIR proposes positions close to the expected ones. To you to realize that 0.74, 0.91, 0.74 corresponds in fact to a special 1/4,y,z position in the Pmcn space group. You will also obtain identical proposals, different only by origin choice, displaced by 1/2 for instance.



 
CaF2
This seems to be a rather simple example. However the success rate (3/50) is far from the Al2O3 success rate (8/10). Why ? There seem to be a lot of false minima with R~15% or higher (caf2.zip) :
  CaF2 Fm3m
5.462   5.462   5.462  90.0  90.0  90.0
F M 3 M
1.54056 4 2 2 1 1 1
0.02511  -0.04562   0.03019  3.
Ca+2F-1
0
6. 6.
2. 1. 0.002
5000 60000 60000
10000 0.1 2 50
1 10
1 1
1.0 1 0
0.5 1.
The success rate would have been certainly enhanced if the special positions had been guessed.
 
 12-Apr-2000   Hour: 17 Min:  7 Sec:  8
  ISEED =       123257

      0 moves acc.       0 tested; Chi**2=0.952    , R=0.952
      0 perm. acc.       0 tested
      0 events did not improved the fit, DUMP = 1.000000

    178 moves acc.   54000 tested; Chi**2=0.951E-02, R=0.010
      7 perm. acc.    5999 tested
     73 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Ca1     0.99584    0.49538    0.49572      0.500
F1      0.75988    0.25526    0.73676      1.000

 12-Apr-2000   Hour: 17 Min:  9 Sec:  0

  Final RF factor    =   1.0959629E-02
  Final Rp(F) factor =   9.5057748E-03
Expected positions are :
Ca     0.    0.    0.
F     1/4  1/4   1/4




 
Calcite

This case is just a bit more complex than Al2O3, with the same space group (calcite.zip) :

  Calcite CaCO3
4.990   4.990  17.061  90.0  90.0 120.0
R -3 C
1.54056 4 3 3 1 1 1
0.02511  -0.04562   0.03019  3.
Ca  C   O
0
9. 9. 9.
2 1.0 0.002
5000 60000 10000
20000 0.3 2 10
1 10
1 1 1
1.0 1 0
0.166667 0.166667 0.5
The expected result is :
Ca  0.00000  0.00000  0.00000
C    0.00000  0.00000  0.25000
O    0.25682  0.00000  0.25000
Again, the good occupation numbers were guessed for the O atom, leading to a 2/10 success rate. Below is the result :
  8-Apr-2000   Hour: 14 Min: 50 Sec: 11
  ISEED =    311722348

      0 moves acc.       0 tested; Chi**2=0.739    , R=0.739
      0 perm. acc.       0 tested
      0 events did not improved the fit, DUMP = 1.000000

    205 moves acc.   54000 tested; Chi**2=0.376E-02, R=0.004
      3 perm. acc.    5999 tested
     62 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Ca1     0.33468    0.66955    0.66667      0.167
C1      0.33275    0.66868    0.41423      0.167
O1      0.07638    0.41015    0.91888      0.500
  8-Apr-2000   Hour: 14 Min: 55 Sec: 30
  Final RF factor    =   3.7637551E-03
  Final Rp(F) factor =   3.7522253E-03
Again, one has to retrieve special positions thinking to the R Bravais lattice.



 
Forsterite

Forsterite was for a while the most complex example found in the Endeavour package (but note that Endeavour worked only in P1, at the beginning, as well as ESPOIR), with up to 6 independent atoms (forsterite.zip) :

  Forsterite Mg2SiO4
4.755  10.198   5.979  90.0  90.0  90.0
P B N M
1.54056 4 6 3 1 1 1
0.02511  -0.04562   0.03019  3.
Mg+2Si+4O-2
0
5. 5. 5.
2. 1. 0.002
10000   100000 50000
40000 0.3 2 10
1 40
2 1 3
1.0 1 0
0.5 0.5 0.5 0.5 0.5 1.0
And the expected result is :
Mg1    0.00000  0.00000  0.00000   0.50000
Mg2    0.99130  0.27730  0.25000   0.50000
Si        0.42610  0.09400  0.25000   0.50000
O1       0.76580  0.09190  0.25000   0.50000
O2       0.22100  0.44700  0.25000   0.50000
O3       0.27740  0.16300  0.03290   1.00000
Miraculously, the true occupation number were guessed (but special positions were not forced to occur). The DoF is now of 18. And the result is obtained with a 3/10 success rate :
  8-Apr-2000   Hour: 18 Min: 51 Sec: 59
  ISEED =    149159323

      0 moves acc.       0 tested; Chi**2=0.700    , R=0.700
      0 perm. acc.       0 tested
      0 events did not improved the fit, DUMP = 1.000000

    307 moves acc.   97500 tested; Chi**2=0.172E-01, R=0.017
     25 perm. acc.    2499 tested
     33 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Mg1     0.50875    0.49923    0.00640      0.500
Mg2     0.50870    0.22264    0.75763      0.500
Si1     0.07374    0.40618    0.75599      0.500
O1      0.71996    0.94709    0.24252      0.500
O2      0.73394    0.40794    0.74355      0.500
O3      0.22193    0.33702    0.96654      1.000
  8-Apr-2000   Hour: 19 Min: 16 Sec:  7

  Final RF factor    =   3.6787927E-02
  Final Rp(F) factor =   1.7179536E-02


That's all for the Endeavour challenge examples on the Endeavour side. Now the test files strictly from ESPOIR.



 
Li3RuO4

Li3RuO4 is cited a lot in the quite interesting book "Computer Modelling in Inorganic Crystallography" edited by C.R.A. Catlow (Academic Press). That structure was predicted in the P1 space group (programs GASPP + GULP), once TREOR gave a monoclinic cell proposition. The final space group (P2/a) was deduced from the structure proposition, and the structure refinement was done by GSAS (J. Mater Chem, 5, 1269, 1995).

Thus, the prediction (genetic algorithm) was not made by using a cost function involving the powder pattern.

It may be considered as strange that Li3RuO4 with 6 independent atoms in P2/a is qualified of "complex" in 1995, just after the structure of La3Ti5Al15O37 with 60 independent atoms is determined by classical powder methodology (structure factors extraction, direct method, see :   J. Solid State Chem. 111 (1994) 52-57).

But of course, for a purely predictive attemp, it was really complex. Moreover, it is still probably out of the current true prediction possibilities (without the cell knowledge).

Anyway, Li3RuO4 would not have resisted more than 30 sec. to such a classical analysis. Even a Patterson would have revealed instantly the Ru position (see some discussion about this compound in the SDPD Mailing List).

ESPOIR is tested on that problem with large success rate whatever the space group (P1 with 16 atoms, P-1 with 8 atoms, or P2/a with 6 atoms).

In P1 (li3ruo40.zip) :

  Li3RuO4 in P1
5.10555 5.85403 5.10587 90. 110.039 90.
P 1
1.54056 4 16 3 1 1 1
0.02511  -0.04562   0.03019  3
Ru  O   Li
0
6. 6. 6.
2. 1. 0.002
10000 200000 50000
30000 0.2 2 10
1 10
2 8 6
1.0 0 0
The success rate is 100% for R < 7%, and the best result is :
 14-Apr-2000   Hour: 17 Min: 12 Sec: 49
  ISEED =       123939

   2855 moves acc.  180000 tested; Chi**2=0.132E-01, R=0.013
    158 perm. acc.   19999 tested
    952 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Ru1     0.76209    0.65650    0.60958      1.000
Ru2     0.75202    0.38156    0.10876      1.000
O1      0.52550    0.62577    0.84202      1.000
O2      0.52080    0.90785    0.38040      1.000
O3      0.52531    0.62189    0.85341      1.000
O4      0.52886    0.62883    0.85440      1.000
O5      0.74367    0.09761    0.58699      1.000
O6      0.02295    0.87624    0.84094      1.000
O7      0.51977    0.90582    0.37901      1.000
O8      0.49850    0.38356    0.31750      1.000
Li1     0.73135    0.89480    0.06258      1.000
Li2     0.52049    0.13555    0.88285      1.000
Li3     0.52060    0.13471    0.88313      1.000
Li4     0.28207    0.00487    0.60878      1.000
Li5     0.53098    0.61823    0.97711      1.000
Li6     0.95342    0.18304    0.36798      1.000

 14-Apr-2000   Hour: 17 Min: 27 Sec: 40

  Final RF factor    =   0.2549882    
  Final Rp(F) factor =   1.2715362E-02
In P2/a (li3ruo4.zip), if you are able to guess the occupancy factors :
  Li3RuO4
5.10555 5.85403 5.10587 90. 110.039 90.
P 2/A
1.54056 4 6 3 1 1 1
0.02511  -0.04562   0.03019  3
Ru  O   Li
0
6. 6. 6.
2. 1. 0.002
5000 50000 25000
20000 0.2 2 10
1 10
1 2 3
1.0 1 0
0.5 1.0 1.0 0.5 0.5 0.5
The success rate is 6/10 (R < 5%), and the best result is :
 14-Apr-2000   Hour: 13 Min: 54 Sec: 55
  ISEED =       100191

    498 moves acc.   45000 tested; Chi**2=0.305E-01, R=0.030
      3 perm. acc.    4999 tested
    121 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Ru1     0.75010    0.86017    0.99988      0.500
O1      0.97685    0.62935    0.24008      1.000
O2      0.00020    0.11553    0.23161      1.000
Li1     0.75014    0.53857    0.50018      0.500
Li2     0.78589    0.07139    0.52836      0.500
Li3     0.74919    0.40432    0.99952      0.500

 14-Apr-2000   Hour: 14 Min:  7 Sec: 46

  Final RF factor    =   0.1645989    
  Final Rp(F) factor =   2.9407920E-02
Note that RF is 16 % whereas Rp(F) = 2.9 %. This is indicating that there is strong overlapping, so that the extracted "|Fobs|" may be rather wrong but the regenerated powder pattern is still correct.

May be the Li atom positions are not really that good... This would need some checking by looking at the bond lenghts, and by making Fourier synthesis after the Rietveld refinements.



 
CuVO3

In order to illustrate the difference in behaviour of ESPOIR on the same problem if treated in P 1 and in P -1, the CuVO3 example already in the package (cuvo3c.dat) is approached here in P 1 (cuvo3.zip). We have now 10 atom sin general position, 30 DoF (degrees of freedom) :

Test on CuVO3
4.9646 5.4023 4.9154 90.32 119.13 63.93
P 1
1.54056 4 10 3 1 1 1
0.09 -0.03 0.04 0.04
Cu  V   O
0
3. 3. 3.
2. 1. 0.002
5000 100000 20000
20000 0.2 2 10
1 10
2 2 6     
1.1 0 0
And the result is :
  8-Apr-2000   Hour: 16 Min: 35 Sec: 39
  ISEED =    625767286

      0 moves acc.       0 tested; Chi**2=0.627    , R=0.627
      0 perm. acc.       0 tested
      0 events did not improved the fit, DUMP = 1.000000

    742 moves acc.   90000 tested; Chi**2=0.116E-02, R=0.001
     26 perm. acc.    9999 tested
     95 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Cu1     0.26821    0.27950    0.69056      1.000
Cu2     0.71098    0.13753    0.41304      1.000
V1      0.69989    0.64577    0.90675      1.000
V2      0.28232    0.77219    0.20265      1.000
O1      0.84023    0.93314    0.11733      1.000
O2      0.47274    0.94467    0.48335      1.000
O3      0.20911    0.94215    0.83917      1.000
O4      0.13166    0.48329    0.97418      1.000
O5      0.75580    0.47816    0.25396      1.000
O6      0.49573    0.47192    0.60955      1.000

  8-Apr-2000   Hour: 17 Min: 12 Sec: 10

  Final RF factor    =   9.9563552E-04
  Final Rp(F) factor =   7.1708602E-04
The difference is that when an atom is moving, two atoms really move in P-1 according to a completely arbitrary origin. Generally, you will observe much less moves accepted in any space group than for the same problem described in P1. The problem is due (I think) to the impossibility to build a truly random starting model, excepted in P1. Anyway, ESPOIR do the job in 2 tests for 10 in P-1, to be compared to a succes rate of 5/10 in the P1 space group.

So, you may consider working in P1 sometimes.



 
TeI

This example is quite the more complex up to now, for two reasons : more atoms (16 in P 1; 48 degrees of freedom), and almost same diffusion factors for both atom types. If ESPOIR succeeds here, this should mean that organic materials at least as complex as TeI should be solved from scratch (random starting model) by ESPOIR. Again, you can compare the performances in P 1 and in P -1.

in P 1, with 16 atoms in general position, for 20 tests starting from different random models (tei.zip).

Test on TeI  P1
9.958 7.992 8.212 104.4 90.1 102.9
P 1
1.54056 4 16 2 1 1 1
0.09 -0.04 0.03 3
Te  I
0
5. 5.
2. 1. 0.005
5000 200000 40000
60000 0.35 2 20
1 10
8 8     
1.0 0 0
And the best result is :
  9-Apr-2000   Hour: 11 Min:  3 Sec: 41
  ISEED =    172661282

      0 moves acc.       0 tested; Chi**2=0.577    , R=0.577
      0 perm. acc.       0 tested
      0 events did not improved the fit, DUMP = 1.000000

   1418 moves acc.  180000 tested; Chi**2=0.187E-02, R=0.002

  13830 perm. acc.   19999 tested
   7215 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Te1     0.98675    0.47061    0.64021      1.000
Te2     0.37615    0.20524    0.82876      1.000
Te3     0.98642    0.47535    0.16504      1.000
Te4     0.37386    0.48026    0.64880      1.000
Te5     0.88995    0.19838    0.32841      1.000
Te6     0.46719    0.74408    0.95849      1.000
Te7     0.99622    0.74218    0.45772      1.000
Te8     0.38666    0.47760    0.12265      1.000
I1      0.64488    0.18281    0.82516      1.000
I2      0.01706    0.16947    0.79954      1.000
I3      0.24643    0.17128    0.33135      1.000
I4      0.72143    0.75655    0.45991      1.000
I5      0.11174    0.77039    0.95130      1.000
I6      0.74831    0.75964    0.96233      1.000
I7      0.61464    0.18266    0.32384      1.000
I8      0.35938    0.77403    0.48553      1.000

  9-Apr-2000   Hour: 12 Min:  2 Sec:  1

  Final RF factor    =   3.1793690E-03
  Final Rp(F) factor =   1.6125488E-03
Almost each tested permutation is accepted. This is completely logical because of the Te and I diffusion factor similarities A total of 200000 events is sufficient, taking 1 hour on a Pentium II 266 Mhz (the 20 tests needing ~ 20 h - and this would be 5 h "only" on a Pentium III, 1 GHz). Only 200 reflections are sufficient for locating those 16 atoms. On would say that classical direct methods would have some difficulties if using the same limited data set. If the test had been directly on the "|Fobs|", a reduction of time by a factor 5 would have been obtained.

In P -1, the above success rate (12/20 if one considers that R < 15 % is successful) is reduced by a factor 2, but ESPOIR still works (teic.zip).

Test on TeI  P-1
9.958 7.992 8.212 104.4 90.1 102.9
P -1
1.54056 4 8 2 1 1 1
0.09 -0.04 0.03 3
Te  I
0
5. 5.
2. 1. 0.005
5000 200000 40000
60000 0.35 2 20
1 10
4 4     
1.0 0 0
After 20 cycles, 3 runs give R<20%, and the result is :
 13-Apr-2000   Hour: 16 Min: 28 Sec: 41
  ISEED =       118643

    551 moves acc.  180000 tested; Chi**2=0.163    , R=0.163
  11449 perm. acc.   19999 tested
   5978 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Te1     0.12008    0.76924    0.56686      1.000
Te2     0.33474    0.49978    0.75723      1.000
Te3     0.65572    0.51429    0.76373      1.000
Te4     0.94702    0.79182    0.55014      1.000
I1      0.60855    0.23108    0.93971      1.000
I2      0.04512    0.79243    0.06616      1.000
I3      0.53488    0.80618    0.57444      1.000
I4      0.27835    0.22808    0.91966      1.000

 13-Apr-2000   Hour: 16 Min: 50 Sec: 25

  Final RF factor    =   0.3050798    
  Final Rp(F) factor =   0.1634225    
No proposal gives the complete structure. This shows again how ESPOIR is more efficient in P 1 in scratch mode. In fact, one should try 50 runs and see what happen. Anyway, a part of the structure is there and it could be completed by running the Rietveld method, and then performing a Fourier difference synthesis.

Clearly, one should not expect that Te and I are really well differentiated here (they are not, of course). So that looking at interatomic distances would allow to recognize Te and I atoms (no I-I direct contact, but Te-I and Te-Te are allowed).



 
PbSO4

In P1, instead of Pnma, there are 24 independent atoms in the cell. The large success rate below (20/20 have R < 10%) is certainly due to easy location of the 4 heavy Pb scatterers. Anyway, in the best solutions, also the S and many of the O atoms were located (pbso4p1.zip).

Test on PbSO4 P1 instead of Pnma
8.482 5.398 6.959 90. 90. 90.    
P 1 
1.54056 4 24 3 1 1 1
 0.02511  -0.04562   0.03019   3
Pb  S   O
0
5. 5. 5.
2. 1. 0.001
20000 500000 100000
40000 0.3 2 20
1 10
4 4 16
1.0 0 0
The best result is :
 11-Apr-2000   Hour: 12 Min: 16 Sec: 26
  ISEED =    304158790

      0 moves acc.       0 tested; Chi**2=0.575    , R=0.575
      0 perm. acc.       0 tested
      0 events did not improved the fit, DUMP = 1.000000

   4424 moves acc.  450000 tested; Chi**2=0.211E-01, R=0.021
    152 perm. acc.   49999 tested
   1413 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Pb1     0.29802    0.15914    0.90542      1.000
Pb2     0.67726    0.65837    0.24710      1.000
Pb3     0.17507    0.66032    0.41167      1.000
Pb4     0.80505    0.15734    0.73674      1.000
S1      0.55053    0.65643    0.76481      1.000
S2      0.41515    0.16088    0.39717      1.000
S3      0.04000    0.66245    0.89509      1.000
S4      0.92705    0.16186    0.26378      1.000
O1      0.56092    0.16241    0.49745      1.000
O2      0.66830    0.66712    0.63038      1.000
O3      0.90561    0.93205    0.38221      1.000
O4      0.90139    0.67454    0.97128      1.000
O5      0.75823    0.16374    0.74527      1.000
O6      0.90664    0.38514    0.37606      1.000
O7      0.78759    0.15706    0.12146      1.000
O8      0.88849    0.62166    0.96959      1.000
O9      0.57367    0.87384    0.88338      1.000
O10     0.38835    0.66059    0.68514      1.000
O11     0.41223    0.94241    0.26844      1.000
O12     0.06731    0.87237    0.77188      1.000
O13     0.57894    0.43859    0.86794      1.000
O14     0.19339    0.65827    0.08272      1.000
O15     0.42180    0.37891    0.26055      1.000
O16     0.29632    0.14576    0.52368      1.000

 11-Apr-2000   Hour: 15 Min: 31 Sec: 32

  Final RF factor    =   8.2848787E-02
  Final Rp(F) factor =   2.1060312E-02


Working in P1 needs then to determe the space group, and to find a new origin, if any.

Finding symmetry elements can then be attempted by using PLATON on the name.spf output :

TITL Test on PbSO4                                             
CELL    8.4820   5.3980   6.9590  90.0000  90.0000  90.0000
SPGR P1
ATOM pb1    0.42876    0.65290    0.18283
ATOM pb2    0.81621    0.16184    0.49586
ATOM pb3    0.31170    0.14734    0.69931
ATOM pb4    0.93629    0.65219    0.02093
Testing with PLATON the above .spf file containing only the Pb atoms as proposed by ESPOIR is sufficient to retrieve the true space group (Pnma) :
          Conventional, New or Pseudo Symmetry
==========================================================
 
Space Group Pnma      No:  62, Laue:  mmm [Hall: -P 2ac 2n ]
 
Lattice Type oP,  Centric, Orthorhombic, 
Order   8( 4) [Shoenflies: D2h^16     ]
 
  Nr            ***** Symmetry Operation(s) *****
 
   1               X ,              Y ,              Z
   2         1/2 - X ,            - Y ,        1/2 + Z
   3         1/2 + X ,        1/2 - Y ,        1/2 - Z
   4             - X ,        1/2 + Y ,            - Z
   5             - X ,            - Y ,            - Z
   6         1/2 + X ,              Y ,        1/2 - Z
   7         1/2 - X ,        1/2 + Y ,        1/2 + Z
   8               X ,        1/2 - Y ,              Z
 
:: Origin shifted to:-0.122,-0.407, 0.339 after transformation 


In the case of CuVO3 and TeI, the best ESPOIR propositions are almost fully correct in P1 space group, so that PLATON has no difficulty to locate the inversion center (the true structures are both P-1) from the whole atomic positions, provided the I atoms are labelled also Te, in the hypothesis of some misplacement.

Concerning PbSO4, if you want to apply ESPOIR in the right Pnma space group, the problem is of course to decide which and how many atoms are on special positions. With Z = 4, there is little doubt that Pb and S are on special positions, but the question is for the O atoms. You can postulate that, owing to the Pb weight, this will not be important and try all atoms in general position (this wrong choice will only have a small influence on the scale factor).

The two ways to run the PbSO4 test case, either in automatic mode (all atoms at general positions) (pbso4.zip), or by guessing if atoms could be on special positions (pbso41.zip), are shown below.

Test on PbSO4 Pnma
8.482 5.398 6.959 90. 90. 90.    
P N M A 
1.54056 4 5 3 1 1 1
 0.02511  -0.04562   0.03019   3
Pb  S   O
0
5. 5. 5.
2. 1. 0.002
5000 100000 20000
20000 0.2 2 10
1 10
1 1 3
1.0 0 0  <-- all atoms with occupancy factor =1
                       and in general position


The 10 tests produce 7 success with R < 10 %. The best result is below:

  8-Apr-2000   Hour: 23 Min: 22 Sec: 57
  ISEED =    495891907

    517 moves acc.   90000 tested; Chi**2=0.442E-01, R=0.044
     12 perm. acc.    9999 tested
    144 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Pb1     0.68743    0.24959    0.33311      1.000
S1      0.93711    0.76917    0.31308      1.000
O1      0.68740    0.24954    0.95111      1.000
O2      0.59252    0.75118    0.10290      1.000
O3      0.58156    0.04751    0.69420      1.000

  8-Apr-2000   Hour: 23 Min: 49 Sec: 54

  Final RF factor    =   4.9446784E-02
  Final Rp(F) factor =   4.4187289E-02


The starting pbso41.dat file, with true occupancy numbers is below :

Test on PbSO4 Pnma
8.482 5.398 6.959 90. 90. 90.    
P N M A 
1.54056 4 5 3 1 1 1
 0.02511  -0.04562   0.03019   3
Pb  S   O
0
5. 5. 5.
2. 1. 0.002
5000 100000 20000
20000 0.2 2 10
1 10
1 1 3
1.0 1 0
0.5 0.5 1. 0.5 0.5
The success rate is 8/10 for R < 10%, and the best result is :
 13-Apr-2000   Hour: 15 Min: 43 Sec: 48
  ISEED =       113257

    366 moves acc.   90000 tested; Chi**2=0.140E-03, R=0.000
     67 perm. acc.    9999 tested
     93 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Pb1     0.18790    0.75167    0.33330      0.500
S1      0.43670    0.25002    0.31581      0.500
O1      0.41800    0.47401    0.19099      1.000
O2      0.19400    0.75195    0.95699      0.500
O3      0.90800    0.75021    0.90402      0.500

 13-Apr-2000   Hour: 15 Min: 54 Sec: 48

  Final RF factor    =   1.4865046E-04
  Final Rp(F) factor =   1.3130555E-04
A last test would have consisted in trying to guess also the special positions occupied by the Pb and S atoms (which is not really difficult in the Pnma space group).



 
Ba2CdP3O10(OH)

This compound structure is solved in Im2m, however all the other possible groups had to be tried. This example illustrates a more complicated manual choice of the occupation numbers (im2m.zip), impossible if you do not have the right chemical formula.

Ba2CdP3O10(OH) Im2m
11.9031   7.3407   5.5533  90.0  90.0  90.0
I M 2 M 
1.54056 4 9 4 1 1 1
0.07084  -0.04479   0.02767  3
Ba  Cd  P   O
0
6. 6. 6. 6.
2. 1.0 0.002
5000 60000 20000
20000 0.3 2 10
1 10
1 1 2 5
1.0 1 0
0.5 0.25 0.5 0.25 1.0 0.5 0.5 0.5 0.25
The success rate is 5/10 for R<15%. The best result  is :
  8-Apr-2000   Hour: 19 Min: 50 Sec:  9
  ISEED =    145909755

    709 moves acc.   54000 tested; Chi**2=0.670E-01, R=0.067
    188 perm. acc.    5999 tested
    281 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

Ba1     0.69473    0.89495    0.49064      0.500
Cd1     0.99989    0.67059    0.49745      0.250
P1      0.89274    0.87620    0.99962      0.500
P2      0.00065    0.25397    0.50025      0.250
O1      0.86880    0.74861    0.79438      1.000
O2      0.65248    0.52056    0.49967      0.500
O3      0.70287    0.57708    0.96223      0.500
O4      0.99972    0.37149    0.72250      0.500
O5      0.50048    0.19876    0.00473      0.250

  8-Apr-2000   Hour: 20 Min: 18 Sec: 20

  Final RF factor    =   8.0833592E-02
  Final Rp(F) factor =   6.6992961E-02
Many of the true positions are special positions with 0 or 1/2 coordinates. You should not expect that ESPOIR will give you such exact values. You will have to give a look to the International Table for Crystallography.

In such a case, the automatic mode (all atoms in general position) will not work, unless you try in P1 space group ! Can you easily guess those occupation numbers ? Not for all the oxygen atoms but there is not a lot of possibilities for the Ba, Cd and P atoms, so that a part of the solution is attainable, at least. 

Fortunately, many space groups do not present any special positions, or many organic compounds show all their atoms in general position (like the cimetidine in P21/n - last scratch example below).

Ahem, note that the final structure of Ba2CdP3O10(OH) was found distorted in the monoclinic system, with beta=90.09°...



 
[Co(NH3)5CO3]NO3.H2O

In all the previous examples, the structure factors presented to ESPOIR were excellent ones (as provided by a single crystal study). The present case is the SDPD round robin sample I, for which no participant proposed a model (although it was solved by the organizers, see : Solid State Sciences 1, 1999, 55-62). Below is shown the ESPOIR performance on this compound with good data and with selected "|Fobs|" extracted from the Round Robin X-ray pattern.

- Good data in P 1.
ESPOIR works fine for this 30 atoms problem, but you will have to apply PLATON for searching the missing symmetry operators, and some atoms are certainly misplaced or not well identified. Have a look at the 2 Co aoms related by a y+1/2 translation, which is a good sign :
 

    640 moves acc. 1981001 tested; Chi**2=0.783E-01, R=0.078
  22227 perm. acc.  198100 tested
       10743 events did not improved the fit
Final coordinates x,y,z and occupation numbers
co 1    0.08745    0.07298    0.55174      1.000
co 2    0.73690    0.57190    0.43416      1.000
n  1    0.11759    0.56399    0.53891      1.000
n  2    0.72046    0.12305    0.95530      1.000
n  3    0.65802    0.71939    0.60319      1.000
n  4    0.81151    0.43511    0.25895      1.000
n  5    0.82421    0.44626    0.66004      1.000
n  6    0.10960    0.62280    0.02686      1.000
n  7    0.66342    0.70737    0.19529      1.000
n  8    0.34270    0.98788    0.61994      1.000
n  9    0.16966    0.20956    0.79560      1.000
n 10    0.47434    0.48721    0.35990      1.000
n 11    0.17457    0.22209    0.37140      1.000
n 12    0.01310    0.94498    0.32230      1.000
c  1    0.01814    0.94085    0.73032      1.000
c  2    0.14872    0.06910    0.54082      1.000
o  1    0.85626    0.20192    0.98168      1.000
o  2    0.31789    0.98017    0.11658      1.000
o  3    0.24503    0.69159    0.54010      1.000
o  4    0.71507    0.00071    0.87474      1.000
o  5    0.56270    0.19712    0.95573      1.000
o  6    0.27031    0.69413    0.03566      1.000
o  7    0.57408    0.18812    0.46404      1.000
o  8    0.16760    0.47710    0.60812      1.000
o  9    0.96780    0.70361    0.02286      1.000
o 10    0.11143    0.49537    0.11406      1.000
o 11    0.66362    0.99035    0.37812      1.000
o 12    0.50667    0.47603    0.88218      1.000
o 13    0.83425    0.17602    0.44959      1.000
o 14    0.99477    0.67122    0.53212      1.000


- Good data in P21. 
This is more direct :
 

    344 moves acc. 1981123 tested; Chi**2=0.365E-01, R=0.037
  15846 perm. acc.  198112 tested
        7769 events did not improved the fit
Final coordinates x,y,z and occupation numbers
co 1    0.81950    0.23785    0.93907      1.000
n  1    0.74516    0.10563    0.69804      1.000
n  2    0.89369    0.37553    0.76021      1.000
n  3    0.26168    0.59025    0.88503      1.000
n  4    0.09917    0.87128    0.82629      1.000
n  5    0.80493    0.69140    0.46587      1.000
n  6    0.56948    0.32317    0.87206      1.000
c  1    0.79570    0.70602    0.94995      1.000
o  1    0.34462    0.11217    0.53715      1.000
o  2    0.74427    0.83145    0.88826      1.000
o  3    0.07663    0.13665    0.04575      1.000
o  4    0.59402    0.33707    0.37846      1.000
o  5    0.05891    0.11206    0.51844      1.000
o  6    0.79752    0.81448    0.38107      1.000
o  7    0.34391    0.11612    0.04028      1.000
The success rate is here of 4/40 and 17 hours of calculation on a Pentium II 266 MHz, and the structure is almost perfect, no error on C, N and O assignments...

Now, if we examine the result with real data, as extracted from the powder pattern distributed with the SDPD Round Robin, the result is certainly not as beautiful. The "|Fobs|" were extracted by the Le Bail method with Fullprof. Near of 150 reflections (at the lowest angles) are used (for 15 atoms to be found in P21). Below are the best results :

    179 moves acc. 1980792 tested; Chi**2=0.193    , R=0.193
   5133 perm. acc.  198079 tested
        2639 events did not improved the fit
Final coordinates x,y,z and occupation numbers
co 1    0.82093    0.36020    0.94044      1.000
n  1    0.37594    0.07268    0.14666      1.000
n  2    0.62631    0.90305    0.47297      1.000
n  3    0.83421    0.84308    0.44808      1.000
n  4    0.37878    0.39791    0.31452      1.000
n  5    0.78679    0.38652    0.44956      1.000
n  6    0.69884    0.09903    0.45740      1.000
c  1    0.16988    0.23056    0.21554      1.000
o  1    0.79673    0.36041    0.97713      1.000
o  2    0.63487    0.91408    0.05895      1.000
o  3    0.43222    0.33256    0.09743      1.000
o  4    0.43146    0.66930    0.73072      1.000
o  5    0.40683    0.95036    0.59913      1.000
o  6    0.78341    0.77434    0.91579      1.000
o  7    0.74343    0.48008    0.05556      1.000
This is not a complete solution but many atoms are already well placed, including the Co atom.



 
Cimetidine

The success rate is of the order of 1/50. The best result is shown below with R = 3.7% after 8000000 moves and 7 hours of  calculation (Pentium II 266Mhz). If you dispose of a big and powerful computer, try to do more tests on it, and let me know the result.

    432 moves acc. 7990498 tested; Chi**2=0.372E-01, R=0.037
  15679 perm. acc.  799049 tested
        7894 events did not improved the fit
Final coordinates x,y,z and occupation numbers
s  1    0.98255    0.91396    0.69786      1.000
c  1    0.08635    0.83805    0.07537      1.000
c  2    0.64513    0.60618    0.14642      1.000
c  3    0.06324    0.65779    0.72502      1.000
c  4    0.72905    0.74969    0.67829      1.000
c  5    0.12604    0.54853    0.25767      1.000
c  6    0.90039    0.78266    0.20823      1.000
c  7    0.03221    0.78999    0.16923      1.000
c  8    0.46558    0.90546    0.90365      1.000
c  9    0.47914    0.41234    0.50753      1.000
c 10    0.73601    0.53650    0.28145      1.000
n  1    0.87490    0.26547    0.77556      1.000
n  2    0.40569    0.09148    0.11088      1.000
n  3    0.29048    0.31663    0.43408      1.000
n  4    0.33178    0.01164    0.35182      1.000
n  5    0.95375    0.62665    0.56134      1.000
n  6    0.63445    0.05413    0.25410      1.000




 
C60

The success rate is 100% for this rather simple case. The C60 molecule is orientationally disordered, the scattering factor is a global one, corresponding to a sphere with appropriate radius (taken from the Fullprof test files). The space group is Fm3m and the molecule has just to be found at the 0,0,0 position. The data are given in a special way (with a negative nt value), with scattering factors as couples of X*sintheta/lamda, (global scattering factor)/Y, and a first line giving the number of couples (57) and the X and Y scales (c60.zip) :

Test on C60 Fm3m
14.152000  14.152000  14.152000  90.000000  90.000000  90.000000
F M 3 M
0.7073 4 1 -1 1 0 1    <--- nt is negative
C
57 2000. 1.
   0.000      1.00000
  22.599      0.95840
  45.198      0.83990
  67.797      0.66190
  90.396      0.45010
 112.994      0.23400
 135.593      0.04170
 158.192     -0.10450
 180.791     -0.19150
 203.390     -0.21710
 225.989     -0.18930
 248.588     -0.12390
 271.186     -0.04140
 293.785      0.03790
 316.384      0.09720
 338.983      0.12610
 361.582      0.12220
 384.181      0.09030
 406.780      0.04080
 429.379     -0.01300
 451.977     -0.05840
 474.576     -0.08570
 497.175     -0.09030
 519.774     -0.07310
 542.373     -0.04010
 564.972     -0.00010
 587.571      0.03670
 610.169      0.06210
 632.768      0.07090
 655.367      0.06210
 677.966      0.03910
 700.565      0.00820
 723.164     -0.02280
 745.763     -0.04640
 768.362     -0.05750
 790.961     -0.05410
 813.559     -0.03790
 836.158     -0.01350
 858.757      0.01290
 881.356      0.03480
 903.955      0.04730
 926.554      0.04770
 949.153      0.03660
 971.751      0.01720
 994.350     -0.00550
1016.949     -0.02590
1039.548     -0.03910
1062.147     -0.04230
1084.746     -0.03510
1107.345     -0.01970
1129.943     -0.00010
1152.542      0.01870
1175.141      0.03220
1197.740      0.03750
1220.339      0.03340
1242.938      0.02140
1265.537      0.00460
0
9.0
2. 1. 0.005
1000 20000 20000
20000 0.40 2 10
1 0
1
7. 0 0
And the result is (using the first 50 hkl) :
  7-Apr-2000   Hour: 19 Min: 15 Sec: 28
  ISEED =    254537710

 Starting coordinates x,y,z and occupation numbers

c1      0.31757    0.18924    0.77633      1.000

    189 moves acc.   19999 tested; Chi**2=0.613E-01, R=0.061
      0 perm. acc.       0 tested
     81 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

c1      0.51075    0.48959    0.98909      1.000
  7-Apr-2000   Hour: 19 Min: 18 Sec:  6
This result gives nearly 1/2,1/2,0, which is one of the F-centered positions equivalent to 0,0,0.



 
pyrene

This compound was used as an example for the GAP program (Genetic Algorithm Program, still unavailable) (Zeit. Kristallogr. 212, 1997, 550-552). By GAP, a solution for the whole C16D10 molecule (ToF neutron data) could be obtained in 33 seconds.

ESPOIR is not able to do as well when working on the regenerated powder pattern (see time below, though, if working on the "|Fobs|", the time would become similar to the GAP time).

The C16 group is here located from X-ray data . The success rate is 100% for R values < 10%, for 10 tests, (pyrene.zip) :

Test on Pyrene
 13.649 9.256 8.470 90.0 100.28 90.0
P 21/A
1.52904 4 16 1 1 1 1
0.02511  -0.04562   0.03019  3
C
0
7.
2. 1. 0.002
5000 80000 80000
40000 0.35 2 10
2 4
16
3.0 0 0
   0.00  0.00 0.00  90.0 90.0 90.0  <-- Cartesian coordinates
 4.2223   -0.3721    3.4328    1.00 
 4.6117    0.2277    2.2644    1.00 
 3.9412   -0.0713    1.0618    1.00 
 4.2967    0.5248   -0.1984    1.00 
 3.6721    0.2194   -1.3151    1.00 
 2.5940   -0.6831   -1.3384    1.00 
 1.8878   -1.0209   -2.5169    1.00 
 0.8355   -1.9345   -2.4719    1.00 
 0.4684   -2.5417   -1.3284    1.00 
 1.1167   -2.2177   -0.1092    1.00 
 0.7541   -2.8416    1.1301    1.00 
 1.3758   -2.5658    2.2552    1.00 
 2.4843   -1.6059    2.2694    1.00 
 3.1909   -1.3069    3.4678    1.00 
 2.8695   -1.0098    1.0859    1.00 
 2.1862   -1.3042   -0.1133    1.00 
The Cartesian coordinates were taken from the Cambridge Structural Databank (CSD), here recognized by putting a = b = c = 0.

The time for testing 60000 rotations and 20000 translations per run (50 "|Fobs|" used for building the regenerated powder pattern) was 12 mn on a Pentium II 266MHz (for one run). The best result is :

  8-Apr-2000   Hour: 22 Min: 10 Sec: 15
  ISEED =    591138599

      0 rot. acc.       0 tested; Chi**2=0.563    , R=0.563
      0 trans. acc.       0 tested
      0 events did not improved the fit, DUMP = 1.000000

   1182 rot. acc.   60000 tested; Chi**2=0.668    , R=0.073
     39 trans. acc.   19999 tested
    409 events did not improved the fit, DUMP = 0.000000

 Final coordinates x,y,z and occupation numbers

C1      0.78352    0.96163    0.91066      1.000
C2      0.70721    0.86742    0.91901      1.000
C3      0.63974    0.83043    0.77881      1.000
C4      0.55818    0.73202    0.77907      1.000
C5      0.49502    0.70031    0.64736      1.000
C6      0.50501    0.75783    0.49740      1.000
C7      0.43934    0.72462    0.35305      1.000
C8      0.45293    0.78663    0.20850      1.000
C9      0.52684    0.88116    0.20073      1.000
C10     0.59651    0.91580    0.34078      1.000
C11     0.67632    0.01588    0.33746      1.000
C12     0.73953    0.05071    0.46788      1.000
C13     0.72925    0.98808    0.62312      1.000
C14     0.79546    0.02586    0.76665      1.000
C15     0.65197    0.89352    0.63013      1.000
C16     0.58517    0.85588    0.48906      1.000

  8-Apr-2000   Hour: 22 Min: 22 Sec: 58

  Final RF factor    =   0.1104051    
  Final Rp(F) factor =   7.2803810E-02




 
RKSA1

The structure of the RKSA1 monosaccharide C13H20N2O5 was recently predicted (L. Smrcok, M. Durik & D. Tunega, Z. Kristallogr. 215, 2000, 254-259) by using the HARDPACK program. In that process, no powder diffraction data is used, an energy minimum is searched for packing configurations of known molecules. Knowing the cell and/or the space group is not an obligation in that technique, but it may help a lot (the cell and space group knowledge was included in the above referenced work, predicting a structure previously determined from single crystal data by using the direct methods - B. Steiner, M. Koos, V. Langer, D. Gyepesova & L. Smrcok, Carbohydrate Res. 311, 1998, 1-9)). The powder diffraction data may be used as a final test for the proposed solution.

Applying ESPOIR to the 50 first structure factor amplitudes extracted from the powder pattern, the RKSA1 molecule was easily located. The success rate is 40-80 % for Rp(F) < 13 %, either using torsion angles or not (rksa1.zip) :

Without freeing the torsion angles (rksa1.dat) :

! title
RKSA1 
!    a,     b,     c,    alpha,    beta,    gamma
   8.7686   8.6510  10.0030  90.0 103.833  90.0
! space group
P 21                            
! lambda, radiation, N of atoms, types of atoms, N of objects, 
! "|Fobs|" or patterns, iprint
1.78892   4  40   4   1   1   5
0.10000  -0.01912   0.01836   3
! atom names, in 8A4
C   H   N   O   
! code for minimal distance contraints
 0
! maximum moves for each type of atom
  10.000  10.000  10.000  10.000
! annealing law, sigma, reject
  1.0000  1.0000  0.0050
! number of events for : print, maximum, save
     10000    100000    100000
! events for restart, rmax, ichi, number of runs
 50000  0.400   2  10
! object type and NPERM for object   1
  2   4
! number of atoms of each type in object   1
  13  20   2   5
! B overall, NOCC, NSPE for object   1
 4.0 0 0
! cell parameters, and x, y, z, occup. for object   1
!Add there the cell parameters
!  and the x,y,z, occup. for your object   1
  0.0   0.0   0.0    90.000   90.000    90.000
1.28649 1.51081 -1.09543 1.0 
1.70731 0.39245 -0.14634 1.0 
0.73658 0.09456 0.98608 1.0 
-0.76365 0.23464 0.56115 1.0 
-0.89683 1.61475 -0.14282 1.0 
1.91698 -1.81374 0.32282 1.0 
1.52353 3.87008 -1.22846 1.0 
3.33699 -1.88972 0.82641 1.0 
1.38502 -3.15958 -0.08199 1.0 
-2.40164 -1.33363 -0.49612 1.0 
-2.53843 -2.4155 -1.53132 1.0 
-1.53043 0.19662 1.82091 1.0 
-2.30251 1.98313 -0.56142 1.0 
-0.5034 -1.22275 -0.80844 1.0 
1.77113 1.40845 -1.96375 1.0 
2.59846 0.62092 0.24509 1.0 
0.92301 0.70809 1.75323 1.0 
-0.52826 2.32905 0.45154 1.0 
1.95452 4.63023 -0.78412 1.0 
0.5618 4.04186 -1.31068 1.0 
1.91148 3.74975 -2.12028 1.0 
3.36786 -2.4425 1.63478 1.0 
3.65813 -0.98745 1.03431 1.0 
3.9067 -2.28836 0.13592 1.0 
1.39812 -3.76189 0.69146 1.0 
1.94611 -3.53135 -0.79415 1.0 
0.46536 -3.06399 -0.40575 1.0 
-1.65462 -2.62956 -1.89823 1.0 
-3.12441 -2.10556 -2.25275 1.0 
-2.92304 -3.21635 -1.11835 1.0 
-2.89157 1.9688 0.22253 1.0 
-2.62621 1.33607 -1.22343 1.0 
-2.30249 2.88084 -0.95409 1.0 
-1.14311 -0.84952 -0.33302 1.0 
-1.96606 0.25054 2.87958 1.0 
1.73199 2.67666 -0.44912 1.0 
-3.35361 -0.92144 0.15549 1.0 
1.06231 -1.23843 1.35516 1.0 
1.79598 -0.88863 -0.7825 1.0 
-0.1086 1.53234 -1.33663 1.0
The best result is :
Object number  1 at test  5.  Previous min R=0.097 at test  3
   0 rot. acc.     0 gen. ; Chi**2=0.692    , R=0.692
   0 trans. acc.    0 tested
   0 events did not improve the fit, DAMP = 1.000000
 
Object number  1 at test  5.  Previous min R=0.097 at test  3
  10 rot. acc.  9409 gen. ; Chi**2=0.105    , R=0.105
   9 trans. acc. 3136 tested
   1 events did not improve the fit, DAMP = 0.874560
 
Object number  1 at test  5.  Previous min R=0.096 at test  5
  12 rot.  acc.75000 gen. ; Chi**2=0.286    , R=0.096
  19 trans. acc.24999 tested
   4 events did not improve the fit, DAMP = 0.009980
The data (see rksa2.dat in the zipped file) treated with free torsion angles (automatic location of the rotatable bonds) differs from the above data file by a nobt=-3 line, requiring an optional subsequent line in which the maximum rotation angles are given (360° for the whole molecule, and 5° for the torsion angles) :
! object type and NPERM for object   1
  -3   4
  360. 5.
The .xyz files including the accepted Monte Carlo events are in the rksa1.zip file. If your Web browser is completed by the CHIME plug-in, you should see below the starting model, and the animation up to the final model, by clicking on the mouse right button, and selecting "animation" :

Below is the ball and stick static display of the 2 molecules in the cell
(cell outline unfortunately not represented by CHIME) :

Note that the success ratio is better without torsion angles in that case... This is because the exact molecule is used as starting model.
 

1-methylfluorene

The structure of this compound was determined by the OCTOPUS-96 program (still unavailable on the Internet, Monte Carlo approach) (Mater. Chem. 6, 1996, 1601-1604). The solution was from a C13 fragment at move 18251 in a run of 20000 events, with Rwp = 33.7%.

Analogous conditions were used here, with the C13 fragment defined in ESPOIR as object one, however the 14th C atom could be considered as object two. Only the 50 first extracted "|Fobs|" were retained for building the regenerated powder pattern. Ten runs were realized, for 100000 Monte Carlo events per run (50000 events for each object, 37500 rotations + 12500 translations for object one, and 50000 moves for object two) (methyl.zip). 

Test on 1-methylfluorene  : C13 + C
 14.297300   5.701100  12.3733  90.00  95.1060 90.
P 21/N
1.52904 4 14 1 2 1 1     <-- two objects
0.02511  -0.04562   0.03019  3
C
0     
7. 
2. 1.0 0.005
5000 100000 100000
50000 0.25 2 20
2 4
13
3.5 0 0
   14.297300   5.701100  12.3733  90.00  95.1060 90.
     0.29800  1.24300 -0.03500  1.00  
     0.37100  1.08300 -0.04400  1.00  
     0.39900  0.91000  0.03700  1.00  
     0.33900  0.86300  0.11900  1.00  
     0.26500  1.01800  0.12500  1.00  
     0.19700  1.02800  0.20900  1.00  
     0.18600  0.88300  0.29700  1.00  
     0.11300  0.93100  0.36300  1.00  
     0.05300  1.12000  0.33600  1.00  
     0.06100  1.25900  0.24400  1.00  
     0.13500  1.21300  0.18300  1.00  
     0.16300  1.52200  0.08400  1.00  
     0.24300  1.20000  0.05000  1.00  
1 0     <-- the second object is just one C atom at random
1
3.5 0 0
The success rate is 12/20 for R < 10%. And the best result obtained in 16 minutes, on a Pentium II 266MHz, is :
  7-Apr-2000   Hour: 18 Min: 49 Sec: 12
  ISEED =    436862952

   Object number            1
    506 rot. acc.   37593 tested; Chi**2=0.525E-01, R=0.052
     42 trans. acc.   12530 tested
    440 events did not improved the fit, DUMP = 0.000006
   Object number            2
     40 moves acc.  49876 tested; Chi**2=0.525E-01, R=0.052
      0 perm. acc.       0 tested
     14 events did not improved the fit, DUMP = 0.000006

 Final coordinates x,y,z and occupation numbers

C1      0.19850    0.13409    0.46451      1.000
C2      0.26989    0.96925    0.45613      1.000
C3      0.29616    0.79634    0.53779      1.000
C4      0.23572    0.75509    0.61995      1.000
C5      0.16329    0.91494    0.62535      1.000
C6      0.09541    0.93121    0.70929      1.000
C7      0.08298    0.78897    0.79784      1.000
C8      0.01048    0.84316    0.86364      1.000
C9      0.95238    0.03534    0.83591      1.000
C10     0.96176    0.17169    0.74338      1.000
C11     0.03527    0.11955    0.68258      1.000
C12     0.06633    0.42439    0.58241      1.000
C13     0.14310    0.09658    0.54966      1.000
C1      0.82325    0.64989    0.61123      1.000

  7-Apr-2000   Hour: 19 Min:  5 Sec: 13

  Final RF factor    =   8.3380125E-02
  Final Rp(F) factor =   5.2450635E-02




 
Cimetidine (pharmaceutical)

If you knew the cimetidine molecule shape, could you locate it, as well as the S atom, by using ESPOIR version 3 ? Undoubtedly yes (cim0.zip) :

Test on cimetidine C10H16N6S : C10N6 + S
10.7001 18.8206  6.8255  90.0 111.28  90.0
P 21/N
1.52904 4 17 3 2 1 1
0.01176 -0.00481 0.00223 3.
S   C   N   
0 
7. 7. 7.
2. 1. 0.005 
5000 100000 100000
40000 0.35 2 20
2 4     <-- object number one, the C10N6 rigid fragment 
0 10 6 
3.0 0 0 
10.7001 18.8206  6.8255  90.0 111.28  90.0
         0.23174  0.35195  0.77730  1.0000   
         0.08631  0.43676  0.67645  1.0000   
         0.02869  0.38828  0.76868  1.0000   
        -0.10273  0.38175  0.80964  1.0000
         0.02448  0.51120  0.59391  1.0000   
         0.14323  0.49332  0.24463  1.0000   
         0.23598  0.56322  0.37858  1.0000   
         0.46070  0.50489  0.50155  1.0000   
         0.56444  0.44226  0.82692  1.0000   
         0.62392  0.54993  0.35794  1.0000   
         0.45268  0.47273  0.66131  1.0000   
         0.21030  0.41723  0.66634  1.0000   
         0.36874  0.54625  0.34632  1.0000   
         0.12808  0.33514  0.82688  1.0000   
         0.59352  0.50863  0.49126  1.0000   
         0.66651  0.58746  0.25019  1.0000   
1 0     <--  object number 2 : the S atom at random
1 0 0 
3.0 0 0 
The success rate is 4/20 for R < 15 % (100000 Monte Carlo events : 37500 rotations + 12500 translations for object one, 50000 moves for the S atom - object two), using the first 50 extracted "|Fobs|" for regenerating the powder pattern. The best result is :
  7-Apr-2000   Hour: 19 Min: 53 Sec: 54
  ISEED =    282762188

   Object number            1
    437 rot. acc.   37288 tested; Chi**2=0.910E-01, R=0.091
     17 trans. acc.   12429 tested
    290 events did not improved the fit, DUMP = 0.000032
   Object number            2
     69 moves acc.   50282 tested; Chi**2=0.910E-01, R=0.091
      0 perm. acc.       0 tested
      1 events did not improved the fit, DUMP = 0.000032


 Final coordinates x,y,z and occupation numbers

C1      0.72529    0.25855    0.19659      1.000
C2      0.57760    0.34087    0.06691      1.000
C3      0.51791    0.29541    0.16436      1.000
C4      0.38333    0.29063    0.19617      1.000
C5      0.51467    0.41300    0.96386      1.000
C6      0.64670    0.38480    0.63521      1.000
C7      0.73439    0.45785    0.75661      1.000
C8      0.96105    0.40221    0.90757      1.000
C9      0.05870    0.34852    0.24856      1.000
C10     0.12974    0.44233    0.76856      1.000
N1      0.94913    0.37470    0.07093      1.000
N2      0.70460    0.32058    0.07092      1.000
N3      0.87090    0.43944    0.73900      1.000
N4      0.61901    0.24365    0.24135      1.000
N5      0.09621    0.40506    0.90654      1.000
N6      0.17501    0.47650    0.65740      1.000
S1      0.01460    0.91539    0.80285      1.000

  7-Apr-2000   Hour: 20 Min: 12 Sec:  9

  Final RF factor    =   9.8725252E-02
  Final Rp(F) factor =   9.1044083E-02
 

Copyright © 1999, 2000 - Armel Le Bail