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Modelling the silica glass structure by the Rietveld method 
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Abstract 

To refine amorphous structures like crystalline ones is impossible. This statement needs now some reconsideration in the 
case of silica glass. Starting with a microstrained crystalline model deriving from the c-u-carnegieite structure, atomic 
coordinates refinements by the Rietveld method prove to be possible. The credibility of the study is supported by the 
simultaneous fit of neutron and X-ray diffraction data. The agreement R, factors are the best ever obtained with a small-size 
model built exclusively from [SiO,] tetrahedra linked by comers. However it is concluded that ‘best’ remains insufficient. 

1. Introduction 

A molecular dynamics (MD) simulation [ll of the 
structure of silica glass was quoted 121 as represent- 
ing probably the closest agreement with experiment. 
A discrepancy RI factor was defined by comparison 
of the observed and simulated neutron real space 
correlation functions for TN(r) (R: = 6.8% 1 I I I 
8 w with Q,,, = 22.88 A-‘, whereas Rx” = 9.1% 
with Q,,, = 45.2 A-‘; see eq. (2) in Ref. [2]). 
Slightly better results are presented here from the 
polycrystalline Rietveld structure analysis technique 
[3]. An adaptation of this method to amorphous 
materials was first applied to multicomponent fluo- 
ride glasses [4]. It can be classified among the meth- 
ods using periodic boundary conditions. Once the 
choice of a crystalline model is made, it is distorted 
mathematically by the application of a statistical 
isotropic microstrain which enhances progressively 
the short, medium and long range disorder. The 
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effect is to produce artificial amorphous-like powder 
diffraction patterns, thanks to a considerable line- 
broadening associated to microstrain. Then one can 
try to refine, in the usual least squares sense, the cell 
parameters and atomic coordinates of small models 
[51. The method was considered [6] as a variation of 
the reverse Monte Carlo technique [7] (RMC). How- 
ever it was not so widely adopted and few applica- 
tions were performed 151. The results presented here 
should bring out this procedure because glassy SiO, 
is concerned. 

2. Methodology and results 

Silica glass has been called quartz-like, cristo- 
balite-like or tridymite-like and so on, although as 
good R, factors as above were never presented. 
Frequent controversies arose on this subject [6,8]. 
These ‘quasi-crystalline’ simulations were crude, by 
contrast with the present one for which the model 
changes to obtain the best agreement with experi- 
mental data. The modified Rietveld program used 
(ARITVE) is almost the original FORTRAN version. 
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The full width at half maximum (PWHM) follows 
the Cagliotti law (PWHM = [U tan’ 8 + V tan 8 + 
WI’/*> able to take account of both instrumental 
resolution and sample broadening effects, The mi- 
crostrain effect and an eventual size effect have 
variations proportional respectively to tan* 13 and 
(1 + tan* 0). The V term needs not to be refined and 
should be fixed at the instrumental resolution value. 
Gaussian peak shape is used that could correspond 
physically to Gaussian microstrain distributions 
whose widths vary as the square of the distance from 
an arbitrary origin [S]. In fact, FWI-IM are so large 
that the profile shape is not very critical and a 
thousand reflections may overlap at a particular 
diffracting angle. The simultaneous fit of several 
diffraction patterns is allowed, X-ray together with 
neutron data if any, eventually with different (con- 
stant) wavelengths. Models tested in this study were 
all the crystalline silica forms and other tridimen- 
sional four connected nets including the denser of 
zeolites and clathrasils. When promising results were 
obtained for a particular model, a better agreement 
was searched by changing the space group of the 
model into the more direct maximal non-isomorphic 
subgroups or the isomorphic subgroups of lowest 
index [9]. 

The data simultaneously fitted in this study are 
the $2 8) functions derived from the Qi(Q> neutron 
tiffraction data presented in Ref. [lo] (Q,,, = z3.56 
A-l) and X-ray data in Ref. [ll] (Q,,, = 16.0 A-l). 
The final model was selected on the basis of the 
highest level of agreement among all the tested cases 
according to the conventional Rietveld profile relia- 
bility, R,, on S(2 13) functions. Models based on 
dense forms of crystalline SiO, (o- or P-quartz, 
keatite, coesite) were rejected with R, > 12% for 
both X-ray and neutron data. The best agreements 
were clearly obtained from cristobalite- and 
tridymite-like starting models with an advantage to 
the former. Large models could not be tested (the 
triclinic low tridymite [12] for instance). In the cur- 
rent version of the program, limits are 30000 reflex- 
ions for each diffraction pattern (three maximum 
simultaneously) of which 12000 could overlap, 70 
atomic coordinates could be refined. Thermal dis- 
placement factors are considered as part of the disor- 
der. The fit of s:me complete more recent neutron 
data (Q,,, > 45 A-‘) was impossible. 

Q(P) 
Fig. 1. Observed (dots) and calculated (line) neutron interference 
functions QiN(Q). 

The very simple model of the o-camegieite struc- 
ture [13], starting from the atomic coordinates given 
by Barth for its early description of high-cristobalite 
[14], was able to produce Ry = 2.64% and R; = 
2.51% after refinement of 13 parameters (six coordi- 
nates only). Lowering the symmetry from cubic (P2 1 3 
space group) to orthorhombic (P2,2,2 1 space group) 
decreased these reliabilities to RF = 2.45% and Rt 
= 2.37% for 27 refined parameters (18 coordinates; 
16237 reflexions for neutron data of which a maxi- 
mum of 8444 could overlap at large angle, respec- 
tively 6133 and 4070 for X-rays). The improvement 
seems small but it was sufficient to lead to a signi- 
ficatively lower Rx” on TN(r) than for the MD 
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Fig. 2. Observed (dots) and calculated (line) X-ray interference 
functions Qix(Q)/fe2(Q). 
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Fig. 3. Observed (dots) and calculated (line) neutron correlation 
functions TN(r). 

simulation [1,2], whereas this was not the case for 
the cubic model. The fits are shown in Fig. 1 for 
QiN(Q) and in Fig. 2 for Qix(Q)/fe2(Q), according 
to the notation developed in Ref. [6]. In the case of 
neutron data, the results presented in Fig. 1 may be 
compared with a previous quasi-crystalline model of 
vitreous SiO, based on the P-cristobalite structure 
(fig. 17 in Ref. [6]), giving an idea of the improve- 
ment due to the refinement. The agreement on the 
neutron real space correlation function TN(r) was 
Rx" = 6.3% (Fig. 3), i.e., 0.5% lower than for the 
best previous MD study for which no simultaneous 
fit of the X-ray data was presented. 

The fact that an R, agreement factor may seem 
low or high for the same model depending on the 
data examined must be emphasized. Replacing T(r) 
by S(Q) in the R formula, one has RF = 4.32% and 
Rx" = 3.60%, whereas for the Qi(Q) data of Figs. 1 
and 2 one obtains respectively 22.3% (1 I Q < 22.88 
A-‘> and 19.3% (1 2 Q I 15.72 A-‘>. The Fourier 
transforms of these interference functions (using the 
same modification function M(Q) as in Ref. [2]) are 
the differential correlation functions, D(r), of which 
the T(r) functions are deduced. oThe R, values 
obtained in the range 1 I r I 8 A are 22.1 and 
19.3%, respectively, for IIN and DX(r>. Better 
R, values were obtained when refining the X-ray 
data set alone or the neutron one; this is to be 
avoided. The model is small since 24 atoms are in 
the cell (of which six are independent). This may be 
compared with 648 independent atoms for the MD 

Table 1 
Refined parameters of the amorphous SiO, model in spacegroup 

P?2,2, 

Atom x Y z 

Si(l) 0.277(2) 0.275(2) 0.282(l) 
Si(2) 0.0090) 0.022(3) 0.016(3) 
O(1) 0.125(3) 0.149(4) 0.152(3) 
O(2) 0.635(4) 0.657(4) 0.061(S) 
O(3) 0.065(4) 0.646(6) 0.654(7) 
O(4) 0.670(3) 0.060(4) 0.621(4) 

Lattice parameters: a = 7.22(7) A,, b = 7.09(6) A and c = 7.30(6) 
A. V/molecule = 46.7(2) A’ with Z = 4. Halfwidth parameters 
for the simultaneous fit of diffraction data rebuilt at a fictitious 20 
scale: U = 22(6), V = 0.5, W = 5.2(l) (neutron, A = 0.35 A) and 
U = 42(11), V = 1.0, W = 15(l) (X-ray, A = 0.5 A). The number 
in parentheses denotes the estimated standard deviation in the last 
digit. 

simulation [l] in the Pl spacegroup. Lowering the 
symmetry from the actual P2,2,2, space group or 
enlarging the cell do not lead to a well conditioned 
problem. With more coordinates to refine, the pro- 
cess becomes unstable due to data scarcity. The 
introduction of constraints on distances, angles and 
cell volume or combination with RMC could im- 
prove a future version of the program. 

The final atomic coordinates are given in Table 1 
together with other refined parameters. An important 
value is the density: the well known measured p0 = 
0.022065 (SiO, units)/A3 has to be compared with a 
calculated value of 0.0214(l). A view of the struc- 
ture is shown in Fig. 4; its orientation allows one to 
recognize the typical cristobalite six-membered rings. 
The mean Si-0 and O-O distances (1.61 and 2.63 

Fig. 4. View of the mean structure model for amorphous SiO,. 
[SiO,] tetrahedra are represented. 
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A) and 0-Si-0 angle (109.5”) fit well tke expected 
values 0[6] (respectively 1.608 ? 0.004 A, 2.626 + 
0.006 A and 109.7 &- 0.6”). There is however a signi- 
ficative deviation between the estimated [15] (144”) 
and calculated (157”) mean Si-0-Si angles. The 
mean is calculated from four values (151, 152, 153, 
172”) of which one deviates much mar? Conse- 
quently, the Si-Si mean disttnce (3.14 A) is too 
large (experimental [lo] 3.08 A) and it is clear that 
the model needs further improvements. 

3. Discussion and conclusion 

An objection to crystal-based models is that they 
fail to specify the interconnecting materials [6]. The 
present model is a mean one and consequently it 
fails also to specify any exact local arrangement. In 
spite of its crystalline origin, the model is in agree- 
ment with the usual definition of a glassy or amor- 
phous material: a solid in which the long-range 
ordering of the atoms is absent. Anyway, from a 
purely quantitative point of view, the fact is now that 
the closest agreement in the sense of R, on TN(r) is 
obtained with a very small mean model deriving 
from an early description of the high-cristobalite 
structure. By contrast with the RMC modelling [16] 
of SiO, (2596 atoms in a cubic box and Pl space 
group), there is no exception here to the fourfold 
oxygen coordination around the Si atoms and the 
model is built up exclusively from six-membered 
rings although this is unlikely to occur strictly in the 
real glass structure. The present refinement method 
is not as general as the RMC method: a reasonable 
starting approach of the final solution is required in 
order to apply least squares efficiently contrarily to 
RMC for which the procedure may start from a 
model just having the right density. Therefore the 
glass composition must be chosen to have at least 
one crystalline analogue suspected to present the 
same basic mean structure as the glass. On another 
hand, RMC fits will never be satisfying with a small 
volume box without a statistical disorder describer 
such as isotropic microstrain. All the models dis- 
cussed here and competing for the closest agreement 
with experiments may be addressed the same criti- 
cisms: how significant are their cell parameters; is 

the object to fit the data so as to obtain the best 
R-factor or fit, but to obtain the best physical model 
(how to define it?) that corresponds to the observed 
data; are the parameters describing the model provid- 
ing a useful picture of silica glass. 

It is not before obtaining R, < 1% on T(r) or 
R, < 2-3% on D(r) and Qi<Q> functions that one 
should claim to have well described (may be) the 
structure of any amorphous material. So the conclu- 
sion will remain prudent, qualitative and not differ- 
ent from that of Hosemann et al. [17] stating: “there 
exist many similarities between the P-cristobalite 
and the silica glass”. It is to be noted that the 
concept of high degree of microstrain is not far from 
the paracrystalline one [17], if not identical. These 
results may comfort works pointing out that “glasses 
come to order” [18]. 

Thanks are due to A.C. Wright for supplying the 
neutron data. 
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