PARTIAL STRUCTURE FACTORS OF FLUORIDE GLASSES " $\mathrm{Pb}_{2} \mathbf{M}_{\mathrm{t}}^{\text {II }} \mathbf{M}_{\mathrm{t}}{ }^{\text {III }} \mathbf{F}_{9}$ " BY NEUTRON DIFFRACTION

A. LE BAIL, C. JACOBONI and R. DE PAPE
Laboratoire des Fluorures et Oxyfluorures Ioniques, UA 449, Faculté des Sciences du Mans, 72017 Le Mans Cédex, France

Received 4 January 1984

Abstract

Separation into partial structure factors has been performed from neutron experiments on " $\mathrm{Pb}_{2} \mathrm{M}_{1}^{\mathrm{II}} \mathrm{M}_{1}^{\mathrm{III}} \mathrm{F}_{9}$ " fluoride glasses making various substitutions for 3d transition metal ($\mathrm{M}_{\mathrm{t}}^{\mathrm{II}}=\mathrm{Mn}^{2+}$, $\mathrm{Zn}^{2+} ; \mathrm{M}_{\mathrm{t}}^{\mathrm{III}}=\mathrm{Fe}^{3+}, \mathrm{V}^{3+}, \mathrm{Ga}^{3+}$). Three groups of pair contributions are obtained: ($\mathrm{F}-\mathrm{F}+\mathrm{Pb}-$ $\mathrm{Pb}+\mathrm{Pb}-\mathrm{F}),\left(\mathrm{M}_{\mathrm{t}}-\mathrm{F}+\mathrm{M}_{\mathrm{t}}-\mathrm{Pb}\right)$ and $\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}}$, assuming a statistical repartition between M_{t}. A structural model is proposed built on corner shared $M_{t} F_{6}$ octahedra and close packing of large ions F^{-}and Pb^{2+} presenting some analogies with BaFeF_{5} and ReO_{3} structure types.

1. Introduction

The $\mathrm{PbF}_{2}-\mathrm{M}_{\mathrm{t}}^{\mathrm{II}} \mathrm{F}_{2}-\mathrm{M}_{\mathrm{t}}^{\mathrm{III}} \mathrm{F}_{3}$ system authorizes a large extent of vitreous area and various 3d transition metal ion associations [1,2]. Structural information has been obtained by EXAFS studies of M_{t} and Pb local environment in glasses of composition " $\mathrm{Pb}_{2} \mathrm{M}_{\mathrm{t}}^{\mathrm{II}} \mathrm{M}_{\mathrm{t}}^{\mathrm{III}} \mathrm{F}_{9}$ " $\left(\mathrm{M}_{\mathrm{t}}^{\mathrm{II}}=\mathrm{Mn}^{2+}, \mathrm{Zn}^{2+} ; \quad \mathrm{M}_{\mathrm{t}}^{\mathrm{III}}=\mathrm{Fe}^{3+}\right.$, Ga^{3+}) [3]. The $\mathbf{M}_{\mathbf{t}}$ are found to be octahedrally coordinated and Pb^{2+} has eight to ten fluorine neighbours forming a very distorted polyhedra. First shell distances are well within the range of values generally observed for these coordinations in crystallized fluoride compounds so that if the $\mathrm{Pb}-\mathrm{F}$ distances remain identical for all the glasses studied, the $\mathrm{M}_{1}-\mathrm{F}$ distances lie between 1.89 $\AA(\mathrm{Ga}-\mathrm{F})$ and $2.10 \AA(\mathrm{Mn}-\mathrm{F})$: this is not an especially good argument for an isomorphous substitution with a necessary conservation of distances. However, recent studies of the short range magnetic ordering by neutron diffraction [4,5] show that the $\mathbf{M}_{\mathbf{t}}-\mathbf{M}_{\mathrm{t}}$ distances and interaction-type between magnetic species remain nearly the same up to $9 \AA$ for glasses like " $\mathrm{Pb}_{2} \mathrm{ZnFeF}_{9}$ ", " $\mathrm{Pb}_{2} \mathrm{MnGaF}_{9}$ " and " $\mathrm{Pb}_{2} \mathrm{MnFeF}_{9}$ " where magnetic correlations depend only, respectively, on pairs $\mathrm{Fe}-\mathrm{Fe}, \mathrm{Mn}-\mathrm{Mn}$ or $(\mathrm{Mn}, \mathrm{Fe})-(\mathrm{Mn}, \mathrm{Fe})$. These results are not in contraction with the EXAFS ones, and examples are found in crystallized compounds of constant distances between $\mathbf{M}_{\mathbf{t}}$ ions having different ionic radii (pyrochlore structure for instance). Neutron magnetic results were consistent with previous ${ }^{19} F$ NMR ones [6], showing that $M_{t}^{\text {II }}$ ions play a different role than $M_{t}^{\text {III }}$ but do not confirm the hypothesis of an $\mathbf{M}_{\mathrm{t}}^{\mathrm{II}}-\mathrm{M}_{\mathrm{t}}^{\mathrm{III}}$ strict alternance: the 3d transition metals are organized in ramified chains built up from corner-shared octahedra and distances are coherent with a simple cubic lattice which could
be half occupied, the number of $\mathbf{M}_{t}^{I I}-\mathbf{M}_{t}^{I I}$ first neighbours being greater than $\mathrm{M}_{\mathrm{t}}^{\mathrm{IH}}-\mathrm{M}_{\mathrm{t}}^{\mathrm{III}}$ ones [5].

The chemical behaviour of 3 d transition metal and known $\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}}$ distances favoured the fact that our glasses could appear reasonably good candidates for isomorphous substitution in the sense of a medium range order. We present here the results of an attempt to determine some partial structure factors. The neutron diffraction spectra are those measured at 290 K in the previous magnetic study [5] (where only the $4-290 \mathrm{~K}$ difference spectra were analyzed); a " $\mathrm{Pb}_{2} \mathrm{MnVF}_{9}$ " glass is added, chosen for the interesting negative contribution due to the neutron scattering length of both Mn and V .

2. Experiment and data analysis

Intensities were recorded with the D2 diffractometer (I.L.L., Grenoble) at a wavelength $\lambda=1.22 \AA$ in the range of momentum transfer $Q=0.4-9.1 \AA^{-1}$ $(4 \pi \sin \theta / \lambda)$. The preparation of the glasses and the whole normalization procedure have been described in the previous study of the magnetic scattering contribution [5]. The nuclear interference function $I(Q)$ was derived from the normalized intensities $I_{\mathrm{a}}(Q)$ with the usual formula:

$$
\begin{equation*}
I(Q)=\left[I_{\mathrm{a}}(Q)-\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right)\right] /\langle b\rangle^{2}, \tag{1}
\end{equation*}
$$

where $\left\langle b^{2}\right\rangle=\sum_{i} c_{i} b_{i}^{2}$ and $\langle b\rangle=\sum_{i} c_{i} b_{i} ; c_{i}$ and b_{i} being respectively the atomic concentration and scattering length of element i. The reduced atomic distribution function $G(R)$ was calculated by the sine-Fourier transform of the reduced interference function extrapolated to the origin:

$$
\begin{align*}
G(R) & =4 \pi R \rho_{0}[g(R)-1] \\
& =(2 / \pi) \int_{0}^{Q_{\max }} Q[I(Q)-1] M(Q) \sin Q R \mathrm{~d} Q \tag{2}
\end{align*}
$$

where $M(Q)$ is the modification function due to Lorch [7] applied in order to remove truncation effects.

The separation into partial structure factors was made following the expression:

$$
\begin{equation*}
I(Q)-1=\sum_{i} \sum_{j}\left(c_{i} c_{j} b_{i} b_{j} /\langle b\rangle^{2}\right)\left[I_{i j}(Q)-1\right] . \tag{3}
\end{equation*}
$$

The glasses we have studied contain four to five elements and so the number of partial structure factors $I_{i j}(Q)$ would be ten or fifteen. We have only six equations like (3) for glasses of the same fundamental composition for which only the transition metals have been substituted. To the isomorphism hypothesis supported in the introduction, we must add, as an approximation, that $\mathbf{M}_{\mathfrak{t}}^{\mathrm{II}}$ and $\mathbf{M}_{\mathbf{t}}^{\mathrm{III}}$ ions are statistically distributed on the same site although the previous neutron magnetic results show that this could not be considered as strictly true. In our opinion, the model proposed for the M_{t} organization
remains compatible with such an approximation because the particular arrangement between $\mathbf{M t}_{\mathrm{t}}^{\mathrm{II}}$ and $\mathbf{M}_{\mathrm{t}}^{\mathrm{III}}$ could lead however to nearly the same partial distributions $M_{t}^{\mathrm{II}} \mathrm{Pb}$ and $\mathbf{M}_{t}^{\mathrm{III}} \mathrm{Pb}$ or $\mathrm{M}_{\mathrm{t}}^{\mathrm{II}} \mathbf{F}$ and $\mathrm{M}_{\mathrm{t}}^{\mathrm{III}} F$. The above hypothesis enable us to rewrite the expression (3) in the following form:

$$
\begin{align*}
I(Q)-1= & \frac{1}{\langle b\rangle^{2}}\left\{c_{\mathrm{M}_{\mathrm{t}}}^{2} \bar{b}_{\mathrm{M}_{\mathrm{t}}}^{2}\left(I_{\mathrm{M}_{\mathrm{t}} \mathrm{M}_{\mathrm{t}}}-1\right)\right. \\
& +2 c_{\mathrm{M}_{\mathrm{t}}} \bar{b}_{\mathrm{M}_{\mathrm{t}}}\left[c_{\mathrm{Pb}} b_{\mathrm{Pb}}\left(I_{\mathrm{M}_{\mathrm{t}} \mathrm{~Pb}}-1\right)+c_{\mathrm{F}} b_{\mathrm{F}}\left(I_{\mathrm{M}_{\mathrm{t}} \mathrm{~F}}-1\right)\right] \\
& +\left[c_{\mathrm{Pb}}^{2} b_{\mathrm{Pb}}^{2}\left(I_{\mathrm{PbPb}}-1\right)+c_{\mathrm{F}}^{2} b_{\mathrm{F}}^{2}\left(I_{\mathrm{FF}}-1\right)\right. \\
& \left.\left.+2 c_{\mathrm{Pb}} c_{\mathrm{F}} b_{\mathrm{Pb}} b_{\mathrm{F}}\left(I_{\mathrm{PbF}}-1\right)\right]\right\}, \tag{4}
\end{align*}
$$

where $\bar{b}_{M_{t}}=\left(\sum_{i} c_{M_{t i}} b_{M_{t i}}\right) / c_{M_{i}}$ and $c_{M_{t}}=\sum_{i} c_{M_{1 i}}$. Eq. (4) shows evidence that three partial structure factor (or sum of partial) may be separated, i.e.

$$
\begin{aligned}
& P_{1}=c_{\mathrm{Pb}} b_{\mathrm{Pb}}\left(I_{\mathrm{M}, \mathrm{~Pb}}-1\right)+c_{\mathrm{F}} b_{\mathrm{F}}\left(I_{\mathrm{M}_{\mathrm{t}} \mathrm{~F}}-1\right), \\
& P_{2}=I_{\mathrm{M}_{\mathrm{t}} \mathrm{M}_{\mathrm{t}}}-1, \\
& P_{3}=c_{\mathrm{Pb}}^{2} b_{\mathrm{Pb}}^{2}\left(I_{\mathrm{PbPb}}-1\right)+c_{\mathrm{F}}^{2} b_{\mathrm{F}}^{2}\left(I_{\mathrm{FF}}-1\right)+2 c_{\mathrm{Pb}} c_{\mathrm{F}} b_{\mathrm{Pb}} b_{\mathrm{F}}\left(I_{\mathrm{PbF}}-1\right) .
\end{aligned}
$$

The weighting factors associated with these three partials for our six glasses are given in table 1, together with the $\bar{b}_{M_{i}}$. The system (over-determined) of linear equations has been solved following a least squares procedure. It is to be noted that, in fact, our six equations permit theoretically to decompose the partial P_{2} in three terms for the pairs $\mathbf{M}_{t}^{\mathrm{II}} \mathbf{M}_{\mathrm{t}}^{\mathrm{II}}, \mathbf{M}_{\mathrm{t}}^{\mathrm{III}} \mathbf{M}_{\mathrm{t}}^{\mathrm{III}}, \mathbf{M}_{\mathrm{t}}^{\mathrm{II}} \mathbf{M}_{\mathrm{t}}^{\mathrm{III}}$ and the partial P_{1} in two terms involving $\mathbf{M}_{\mathrm{t}}^{\mathrm{II}}$ and $\mathbf{M}_{\mathrm{t}}^{\mathrm{III}}$, and so the statistical repartition hypothesis for \mathbf{M}_{t} would be unnecessary, but the difference in scattering length between $\mathrm{Fe}\left(0.954 \times 10^{-12} \mathrm{~cm}\right)$ and $\mathrm{Ga}\left(0.72 \times 10^{-12} \mathrm{~cm}\right)$ is weak and the determinant of such a system becomes too small as verified.

Table 1
Mean scattering length $\bar{b}_{M_{1}}$, weight factors of partials P_{1}, P_{2}, P_{3} for " $\mathrm{Pb}_{2} \mathrm{M}_{\mathrm{t}}^{\mathrm{II}} \mathrm{M}_{1}^{\mathrm{III}} \mathrm{F}_{9}$ " glasses

$\overline{\mathbf{P b}_{2}}$	$\mathrm{M}_{\mathbf{t}}^{\text {II }}$	$\mathrm{M}_{\mathrm{t}}^{\text {III }} \quad \mathrm{F}_{9}$	$\begin{aligned} & \bar{b}_{\mathrm{Mt}} \\ & \left(10^{-12} \mathrm{~cm}\right) \end{aligned}$	$\begin{aligned} & P_{2} \\ & 1 /\langle b\rangle^{2} c_{M_{t}}^{2} \bar{b}_{M_{t}}^{2} \\ & \left(\times 10^{2}\right) \end{aligned}$	$\begin{aligned} & P_{1} \\ & 2 /\langle b\rangle^{2} c_{M_{1}} \bar{b}_{M_{t}} \end{aligned}$	$\begin{aligned} & P_{3} \\ & 1 /\langle b\rangle^{2} \end{aligned}$
	Mn	V	-0.207	0.398	-0.250	3.928
	Mn	Ga	0.174	0.225	0.168	3.154
	Mn	GaFe (6:4)	0.220	0.353	0.208	3.074
	Mn	Fe	0.291	0.591	0.265	2.961
	ZnMn (6:4)	Fe	0.573	1.993	0.452	2.563
	Zn	Fe	0.762	3.214	0.549	2.340

3. Results and discussion

The six total interference functions $S(Q)-1=\left[I_{\mathrm{a}}(Q)-\left\langle b^{2}\right\rangle\right] /\left\langle b^{2}\right\rangle$ (prefered to $I(Q)-1$ for a best graphical representation because of large variations on $\langle b\rangle^{2}$) are shown in fig. 1 and the corresponding reduced atomic distribution function $G(R)$ in fig. 2. Both are presented from A to F in an increasing order of $\bar{b}_{\mathrm{M}_{1}}$ and show the expected systematic evolution of peaks in intensity but also in position. The first peak of $G(R)$ at $2 \AA$ is unresolved because of the proximity of a second peak at $2.7 \AA$ and the broadening effect of the modification function $M(Q)$. This first peak can be attributed unambiguously to pairs $\mathrm{M}_{\mathrm{t}}-\mathrm{F}$ and, as expected, its contribution is larger in the case of " $\mathrm{Pb}_{2} \mathrm{ZnFeF}_{9}$ " and appears to be negative in the case of " $\mathrm{Pb}_{2} \mathrm{MnVF}_{9}$ ". The second peak is coherent with $\mathrm{F}-\mathrm{F}$ distances but also with $\mathrm{Pb}-\mathrm{F}$ ones previously determined by EXAFS; its intensity increase regularly with the weighting factor $1 /\langle b\rangle^{2}$ of the sum of partials P_{3}. Between 3.5 and $6 \AA$, two peaks are seen of almost equal intensity for " $\mathrm{Pb}_{2} \mathrm{ZnFeF}_{9}$ ", the first of them decreasing with $\bar{b}_{\mathrm{M}_{1}}$ and the second simultaneously increasing so that the region between 3.5 and $4.5 \AA$ can be attributed to pairs $\mathrm{M}_{\mathrm{t}}-\mathrm{Pb}, \mathrm{M}_{\mathrm{t}}-\mathrm{F}$ or $\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}}$ and the region between 4.5 and $6.0 \AA$ to the sum P_{3}. For larger distances, variations are less pronounced and peak attribution is uncertain.

Fig. 1. Interference functions $S(Q)-1$ for " $\mathrm{Pb}_{2} \mathbf{M}_{1}^{\mathrm{II}} \mathbf{M}_{1}^{\mathrm{III}} \mathrm{F}_{9}$ " glasses with $\mathbf{M}_{1}^{\mathrm{II}} \mathbf{M}_{1}^{\mathrm{III}}=$ ZnFe (A), $\mathrm{Zn}_{0.6} \mathrm{Mn}_{0.4} \mathrm{Fe}$ (B), MnFe (C), $\mathrm{MnGa}_{0.6} \mathrm{Fe}_{0.4}$ (D), $\mathrm{MnGa}(\mathrm{E}), \mathrm{MnV}(\mathrm{F})$.

Fig. 2. Reduced atomic distribution function $G(R)$ for " $\mathrm{Pb}_{2} \mathrm{M}_{\mathrm{t}}^{\mathrm{II}} \mathrm{M}_{\mathrm{t}}^{\mathrm{III}} \mathrm{F}_{9}$ " glasses with $\mathbf{M}_{\mathrm{t}}^{\mathrm{II}} \mathbf{M}_{\mathrm{t}}^{\mathrm{III}}=\mathrm{ZnFe}(\mathrm{A}), \quad \mathrm{Zn}_{0.6} \mathrm{Mn}_{0.4} \mathrm{Fe}$ (B), MnFe (C), $\mathrm{MnGa}_{0.6} \mathrm{Fe}_{0.4}$ (D), MnGa (E), $\operatorname{MnV}(\mathrm{F})$.

The partial reduced interference functions P_{1}, P_{2}, P_{3} are shown in fig. 3 and the corresponding reduced atomic distribution in fig. 4 . No constraint nor stabilization method has been applied in the resolution of the linear equations system (4) but it has been found necessary to realize a first separation with the three equations for which $\bar{b}_{\mathbf{M}_{\mathrm{t}}}$ are the largest in order to obtain the more accurate partial $P_{2}\left(\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}}\right)$. This is easily understood if we consider the weighting factors $W_{i j}=c_{i} c_{j} b_{i} b_{j} /\langle b\rangle^{2}$: the weight for $\mathrm{M}_{1}-\mathrm{M}_{t}$ is only 3.21% of the total in the " $\mathrm{Pb}_{2} \mathrm{ZnFeF}_{9}$ " case and reduces to 0.23% in the most defavourable case of " $\mathrm{Pb}_{2} \mathrm{MnGaF}_{9}$ " so the $\mathrm{M}_{1}-\mathrm{M}_{\mathrm{t}}$ contribution is included in the error band consecutive to statistical noise and data treatment in the latter. The partial P_{2} obtained in this way was smoothed and substracted with the appropriate weight to the six equations; only partials P_{1} and P_{3} were then determined in a second solution of the system on the resulting equations. Of course, P_{1} and P_{3} for the first and second determination where compared and found almost identical but with less noise in the second case. Difficulties encountered to obtain the partial P_{2} could be in some part the consequence of the above hypothesis (isomorphous substitution and statistical repartition for \mathbf{M}_{t}) but results were in their favour: the unresolved peaks of the total reduced atomic distribution (fig. 2) appear very well separated on the three partials (fig. 4) and confirm the interpretation of the first four shells. The distances and coordination numbers (estimated with a mean value $\rho_{0}=0.0665$ atom $/ \AA^{3}$)

Fig. 3. Partitial interference functions P_{1} $\left(c_{\mathrm{Pb}} b_{\mathrm{Pb}}\left[I_{\mathrm{M}_{1} \mathrm{~Pb}}-1\right]+c_{\mathrm{F}} \mathrm{b}_{\mathrm{F}}\left[I_{\mathrm{M}_{1} \mathrm{~F}}-1\right]\right), \quad p_{2}$ $\left(I_{M_{1} M_{1}}-1\right)$ and $P_{3}\left(c_{\mathrm{Pb}}^{2} b_{\mathrm{Pb}}\left[I_{\mathrm{PbPb}}-1\right]+c_{\mathrm{F}}^{2} b_{\mathrm{F}}^{2}\right.$ $\left.\left[I_{\mathrm{FF}}-1\right]+2 c_{\mathrm{Pb}} c_{\mathrm{F}} \mathrm{b}_{\mathrm{Pb}} \mathrm{b}_{\mathrm{F}}\left[I_{\mathrm{PbF}}-1\right]\right)$.

Fig. 4. Partial reduced atomic distribution functions $P_{1}\left(0.145 G_{M_{1} \mathrm{~Pb}}+0.922 \mathrm{G}_{\mathrm{M}_{1} \mathrm{~F}}\right), P_{2}$ $\left(G_{\mathrm{M}_{1} \mathrm{M}_{1}}\right)$ and $P_{3}\left(0.154 G_{\mathrm{FF}}+0.113 G_{\mathrm{PbF}}+\right.$ $0.021 \mathrm{G}_{\mathrm{PbPb}}$).

Table 2
Distances and coordination number for " $\mathrm{Pb}_{2} \mathbf{M}_{\mathrm{t}}^{\mathrm{II}} \mathbf{M}_{\mathrm{t}}^{\mathrm{III}} \mathrm{F}_{9}$ " glasses

Partial	Pairs	Distances (\AA)			Coordination numbers	
		This work	EXAFS	Magnetic correlations	This work	EXAFS
P_{2}	$M_{1}-M_{1}$	${ }^{3.53}$	3.6 ± 0.1	3.62(AF)	3.0	$6 \pm 1\left(M_{t}-F\right)$
		5.01		5.08(F)	2.8	
		6.27		5.95(AF)	8.2	
		7.44		6.87(F)	8.6	
				8.21(AF)		
P_{1}	$M_{t}-\mathrm{F}$	1.97	$\left\{\begin{array}{l} 1.93(\mathrm{Fe}-\mathrm{F}) \\ 1.89(\mathrm{Ga}-\mathrm{F}) \\ 2.00(\mathrm{Zn}-\mathrm{F}) \\ 2.10(\mathrm{Mn}-\mathrm{F}) \end{array}\right.$		$\begin{aligned} & 5.9\left(\mathrm{M}_{\mathrm{t}}-\mathrm{F}\right) \\ & 1.3\left(\mathrm{~F}-\mathrm{M}_{\mathrm{t}}\right) \end{aligned}$	
P_{3}	$\left.\begin{array}{l} M_{1}-F \\ M_{t}-P b \end{array}\right\}$	4.01	2.64 (Pb-F)		8.4	$9 \pm 2(\mathrm{~Pb}-\mathrm{F})$
	$\left.\begin{array}{r} (\mathrm{Pb}-\mathrm{F}, \\ \mathrm{F}-\mathrm{F}) \end{array}\right\}$	2.7				
	$\left.\begin{array}{l}(F-F, \\ P b-F, \\ P b-P b)\end{array}\right)$	$\left\{\begin{array}{l}4.20 \\ 5.11 \\ 7.51\end{array}\right.$				

deduced of the three partials are given in table 2 together with previous EXAFS and neutron magnetic results.

For pairs $\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}}$, the various results of table 2 are in well accordance but distances from magnetic correlations are certainly more accurate. The calculation of the mean value $\left\langle S_{0} \cdot S_{R 1}\right\rangle$ for first $M_{t}-M_{t}$ neighbours is now possible by the ratio of $4 \pi R^{2} \rho(R)\left\langle S_{0} \cdot S_{R}\right\rangle$ and $4 \pi R^{2} \rho(R)$, from respectively neutron magnetic measurements on " $\mathrm{Pb}_{2} \mathrm{MnFeF}_{\text {, " glass and the } \mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}} \text { RDF }}$ (fig. 5), giving -0.5 which is to compare with -6.25 for perfect antiferromagnetic coupling between $5 / 2$ spins. The curve $\left\langle S_{0} \cdot S_{R}\right\rangle$ in fig. 6 c was computed for a $M_{t}-M_{t}$ RDF calculated with the same $Q_{\text {max }}$ value ($4.5 \AA^{-1}$) as for the magnetic RDF, it shows the negligible spin ordering of next nearest neighbours. The distance $\mathrm{M}_{\mathrm{t}}-\mathrm{F}$ of $1.97 \AA$ agree with a mean value of EXAFS results and the M_{t} octahedral coordination is confirmed. The partial P_{1} corresponds to $0.145\left(I_{\mathrm{M}_{\mathrm{t}} \mathrm{Pb}}-1\right)+0.392\left(I_{\mathrm{M}_{\mathrm{i}} \mathrm{F}}-1\right)$ so that the pairs $\mathrm{M}_{\mathrm{t}} \mathrm{Pb}$ contribution is not negligible: the peak at $4.01 \AA$ does not present large asymmetry and distance $\mathbf{M}_{\mathbf{t}}-\mathrm{Pb}$ is probably very close to that of a second fluorine shell for $\mathbf{M}_{\mathbf{t}}$. According to $\mathbf{M}_{t}-M_{t}$ distance, $M_{t} F_{6}$ octahedra are only corner-shared and a transition metal with three M_{1} neighbours at $3.6 \AA$ would have twelve second fluorine neighbours near $4 \AA$. The first peak area of the partial P_{3} gives 8.4 F-F neighbours if we use a coordination number of nine evaluated by EXAFS

Fig. 5. Magnetic and spatial RDF for $\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{1}$ pairs. $4 \pi R^{2} \rho(R)\left\langle S_{0} \cdot S_{R}\right\rangle(\mathrm{A}) ; 4 \pi R^{2} \rho(R)(\mathrm{B}) ;$ $\left\langle\boldsymbol{S}_{0} \cdot \boldsymbol{S}_{R}\right\rangle(\mathrm{C})$.

Fig. 6. Stereographic view of a possible model for M_{t} and Pb^{2+} arrangement in " $\mathrm{Pb}_{2} \mathbf{M}_{1}^{\mathrm{II}} \mathbf{M}_{t}^{\mathrm{II}} F_{9}$ " glasses.
for $\mathrm{Pb}-\mathrm{F}$; such a number is compatible with eight for a fluorine sharing two $\mathrm{M}_{\mathrm{t}} \mathrm{F}_{6}$ octahedra or approximately nine for a fluorine sharing a PbF_{9} polyhedra and an octahedra. The various contributions of P_{3} are weighted as follows: $0.154\left(I_{\mathrm{FF}}-1\right)+0.113\left(I_{\mathrm{PbF}}-1\right)+0.021\left(I_{\mathrm{PbPb}}-1\right)$ so that the $\mathrm{Pb}-\mathrm{Pb}$ contribution is only 7.3% but the peaks of P 3 cannot be attributed unambiguously to one pair or another. Preliminary results of an X-ray diffraction study on these glasses, where $\mathrm{Pb}-\mathrm{Pb}$ pairs largely dominate, give $4.2 \AA$ for the $\mathrm{Pb}-\mathrm{Pb}$ distance which corresponds well to the enhancement of the second peak of P_{3}; in fact, $\mathrm{F}-\mathrm{F}$ or $\mathrm{Pb}-\mathrm{F}$ distances could be also of this order on P_{3}.

A glassy network model of distorted connected chains build up from corner sharing $M_{1} F_{6}$ octahedra, presenting some analogy with the ReO_{3} type structure with half sites occupyed, was proposed from the EXAFS and neutron magnetic studies [3-5]. Pb^{2+} was first thought to be in interstitial sites, this model can now be completed with the following considerations. For a composition

(2)

(y)

Fig. 7. $\mathrm{Pb}_{5} \mathrm{Fe}_{3} \mathrm{~F}_{19}$ structure ($\alpha+\gamma$ chains) and modification for BaFeF_{5} type ($\alpha+\gamma$ chains)
$\mathrm{Pb}_{5} \mathrm{Fe}_{3} \mathrm{~F}_{19}$ close to the vitreous area limits, one can obtain a glass or a crystallized compound structurally closely related to BaFeF_{5} [8]. Moreover, the main constituant appearing during a recrystallization process of glasses in all the vitreous domain has been identified as presenting fundamentally the same X-ray spectra as $\mathrm{Pb}_{5} \mathrm{Fe}_{3} \mathrm{~F}_{19}$ and a possibility of solid solution between M_{t} $\left(M_{t}^{I I}, M_{i}^{I I I}\right)$ is not excluded. If we consider the BaFeF_{5} structure in an idealized point of view, 3/4 of the Fe^{3+} are in an arrangement of corner shared octahedra occupying half the sites of the FeF_{3} structure (ReO_{3}-like); all the Ba^{2+} are situated on a site very close to that of F^{-}in FeF_{3} so that Ba^{2+} and F^{-} form a face-centered cubic array $3 / 4$ occupied where $\mathrm{Ba}-\mathrm{Ba}$ direct contact is excluded. For their apparent simplicity (very few and well separated peaks) our partials P_{1} and P_{3} are compatible with such a model and also distances are coherent. Fig. 6 reproduces the previous model of $\mathbf{M}_{t}-\mathbf{M}_{t}$ network and show how Pb^{2+} could be inserted; this model can be compared to the $\mathrm{Pb}_{5} \mathrm{Fe}_{3} \mathrm{~F}_{19}$ structure in fig. 7 (the BaFeF_{5} type is obtained from $\mathrm{Pb}_{5} \mathrm{Fe}_{3} \mathrm{~F}_{19}$ by replacing
the Pb in 4 b of β chains by Fe forming the γ chains) where Fe^{3+} have been joined to show the relation with the FeF_{3} structure. The α chains are out of this description but, in our opinion, the isolated γ and α chains of BaFeF_{5} must be interconnected and could not exist without defect on a large scale in glasses.

4. Conclusion

Lead transition metal fluoride glasses could be described in terms of relatively close packing of large ions F^{-}and Pb^{2+} excluding $\mathrm{Pb}-\mathrm{Pb}$ direct contact with $\mathbf{M}_{\mathbf{t}}$ inducing octahedral sites or in another way as a corner shared octahedral network with Pb^{2+} in interstitial sites. For the structural point of view, the common notion of "former" or "modifier" cannot be easily introduced here. The occurrence of disorder and the feasibility of these glasses is probably in large part the consequence of multiple possibilities for interconnecting octahedral chains and of some interchangeability between Pb^{2+} and F^{-}. A quasicrystalline modelisation is actually being performed in order to confirm the local order similitude in our glasses with fluoride compounds which crystallize near the vitreous domain.

References

[1] J.P. Miranday, C. Jacoboni and R. De Pape, Rev. Chim, Min. 16 (1979) 277.
[2] J.P. Miranday, C. Jacoboni and R. De Pape, J. Non-Crystalline Solids 43 (1981) 393.
[3] A. Le Bail, C. Jacoboni and R. De Pape, J. Solid St. Chem. 52 (1984) 32.
[4] A. Le Bail, C. Jacoboni and R. De Pape, J. Solid St. Chem. 48 (1983) 168.
[5] A: Le Bail, C. Jacoboni and R. De Pape, J. Non-Crystalline Solids, this issue, preceding article.
[6] C. Dupas, L. Le Dang, J.P. Renard, P. Veillet, J.P. Miranday and C. Jacoboni, J. de Phys. 42 (1981) 1345.
[7] E.A. Lorch, J. de Phys. C2 (1969) 229.
[8] C. Jacoboni, A. Le Bail, R. De Pape and J.P. Renard, Solid State Chem., Proc. Second European Conf., Veldhoven, The Netherlands, Studies in Inorganic Chemistry 3 (1983) 687.

